Zigzag nanowire regulates Brownian motion

Published in Physics World, 29 Aug 2011

Physicists in the US have created a magnetic trap that can contain microscopic particles despite their Brownian motion. The trap, which is based on a magnetized, zigzag-shaped nanowire, could help researchers to perform chemical or biological experiments in a microfluidic environment, where fluids are geometrically constrained to a submillimetre scale.

Microfluidics is a nascent field that involves shifting picolitre quantities of liquids through micron-width channels. The ability to perform measurements on tiny quantities is useful to many researchers in chemistry, biology and medicine who have to work with materials that are expensive or difficult to synthesize, such as new drugs. Moreover, several microfluidic systems can be incorporated together, allowing the creation of “lab on a chip” platforms for the study of many chemical processes at once. […]

The rest of this article is available here.